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Section 1: Introduction
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Types of spatial data

Spatial data can be viewed as the result from observations of a stochastic process

{Z(s) : s ∈ D ⊂ Rd},

where Z(s) denotes the attribute we observe at (spatial) location s.

Three types of spatial data are distinguished:

• Geostatistical (or point-referenced) data, where s varies continuously in space
over a fixed domain D. Usually, we use data {Z(s1), . . . ,Z(sn)} observed at
known spatial locations {s1, . . . , sn} to predict the values of the variable of
interest at unsampled locations.

• Point pattern data, where D itself is random; its index set provides the
locations of random events that form the spatial point process. Z(s) can simply
take the value 1 for all s ∈ D (indicating the occurrence of an event), or it can
include additional information about some variable of interest (referred to as
marked point processes).

• Areal (or lattice) data, where D is a fixed countable collection of (regular or
irregular) areal units whose boundaries are clearly defined. Areal data usually
arise when the number of events corresponding to some variable of interest are
aggregated in areas.
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Examples: geostatistical data

Remote sensing data of daytime land surface temperature (LST) and mean
maximum temperature (Tmax) in Navarre during the third week of Feb-2014.
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Figure 1: Militino, A., Ugarte, M., and Pérez-Goya, U. (2018). Improving the Quality of Satellite
Imagery Based on Ground-Truth Data from Rain Gauge Stations. Remote Sensing, 10(3), 398.
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Examples: point pattern data

Sky positions of 4215 galaxies within the Shapley Supercluster, recognized as
the largest concentration of galaxies in the nearby universe.

Figure 2: Baddeley, A., Turner, R. (2005). spatstat: An R Package for Analyzing Spatial Point
Patterns. Journal of Statistical Software 12(6), pp. 1-42. Original source: M.J. Drinkwater,
Department of Physics, University of Queensland.
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Examples: marked point pattern data

Location of forest fires that occurred in the province of Castellón during the
years 2001-2006. The circles indicate the size class for each fire: (0, 1] ha,
(1, 6] ha, (6, 11] ha, (11, 16] ha, (16, 21] ha, and more than 21 ha.

Figure 3: D́ıaz-Avalos, C., Juan, P., and Serra-Saurina, L. (2016). Modeling fire size of wildfires in
Castellon (Spain), using spatiotemporal marked point processes. Forest Ecology and Management, 381,
pp. 360-369.
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Examples: areal data

Spatio-temporal analysis of relative risks of breast cancer mortality in the
provinces of Spain during the period 1990-2010.
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Introduction to disease mapping

• The development of new techniques and computational algorithms to analyse
massive spatial and spatio-temporal datasets is of crucial interest in many fields
such as remote sensing, geoscience, ecology, crime research and epidemiology
among others.

• Disease mapping is the field of spatial epidemiology that deals with aggregated
count data from non-overlapping areal units focussing on the estimation of the
geographical distribution of a disease and its evolution in time.

• Three main inferential goals in disease mapping:

1. To provide estimates of mortality/incidence risks or rates

2. To unveil underlying spatial and spatio-temporal patterns

3. To detect high-risk areas or hotspots

• The information acquired from these analyses is of great interest for health
researchers, epidemiologists and policy makers.

Bayesian scalable models to analyze high-dimensional areal data using the bigDM library 9/53



Introduction to disease mapping

• Classical risk estimation measures such as the standardized mortality ratio
(SMR) or crude rates, are extremely variable when analyzing rare diseases
(with few cases) or low-populated areas.

• This makes necessary the use of statistical models to smooth risks (or
rates) borrowing information from spatial and temporal neighbors.
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Figure 4: Maps with SMRs and smooth relative risks in the municipalities of Spain.
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Introduction to disease mapping

The joint modelling of several responses offer some advantages:

• it increases the effective sampling size and improves risk smoothing by
borrowing strength between diseases

• it allows relationships between the geographical distribution of the diseases
(i.e., correlations between spatial patterns)

Figure 5: Toy example of a multivariate neighbourhood graph.
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Introduction to disease mapping

• Mixed Poisson models including conditional autoregressive (CAR) priors for
space and random walk priors for time including space-time interactions
(Knorr-Held, 2000) are typical models in space-time disease mapping.

• Other approaches based on reduced rank multidimensional P-splines have
been also proposed in this field to deal with univariate and multivariate
count data (see for example Ugarte et al., 2017; Vicente et al., 2023b).

• Despite the enormous expansion of modern computers and the
development of new software and estimation techniques to make fully
Bayesian inference, dealing with massive data is still computationally
challenging.
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High-dimensional areal data

• Question: Are these smoothing methods ‘appropriate’ when analyzing
very large datasets?

• Two main problematic aspects

1. Computational time & resources:

These methods are built on the idea of spatial/temporal correlation
and generally use a covariance or precision matrix with dimension equal
to the number of spatial locations × time points.

2. Model assumptions:

CAR models induces the same degree of spatial dependence through
the whole adjacency graph (stationary models).
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Scalable Bayesian model proposal

• The R package bigDM implements several univariate and multivariate
scalable Bayesian models to analyse high-dimensional count data.

• The methodology is based on the idea of “divide-and-conquer”, a strategy
that has been extensively used to analyse big data in other contexts such
as machine learning.

• Main advantages:

• Substantial reduction of RAM/CPU memory usage and computational time.

• It enables statistical inference within the subdivisions of the study domain
using local non-stationary models.
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R package bigDM

• Available at CRAN (stable version) and GitHub (development version).

• The modelling approach is based on the idea of divide-and-conquer so that
local models can be fitted simultaneously.

• Inference is fully Bayesian using the well-known integrated nested Laplace
approximation (INLA; Rue et al., 2009) technique through the R-INLA

package.

• Parallel or distributed computation strategies can be performed to speed
up computations by using the future package (Bengtsson, 2020).
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R package bigDM

The package has more than 9000 downloads since its publication on CRAN in

Feb-2022.

Version 0.1.0
First release of the
package in GitHub

2020/06/26

Version 0.2.0
Speedup

improvements in
mergeINLA() function

2020/10/01

Version 0.3.0
Parallel and
distributed

computation strategies
for the CAR INLA()

function
(Orozco-Acosta et al.,

2021)
2021/04/19

Version 0.4.0
New STCAR INLA()

function to fit scalable
spatio-temporal CAR

models
(Orozco-Acosta et al.,

2023a)
2022/01/21

Version 0.4.1
First released on

CRAN
2022/02/08

Version 0.5.0
New MCAR INLA()

function to fit scalable
spatial multivariate

CAR models (Vicente
et al., 2023a)
2022/10/27

Version 0.5.1
Adaptation of STCAR
INLA() function for

spatio-temporal
predictions

(Orozco-Acosta et al.,
2023b)

2023/02/14

Version 0.6.0
New function to

compute posterior
patterns in

univariate/multivariate
models

2024/??/??

Figure 6: Milestones of the package development process and associated
publications.
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Main functions in bigDM package

• CAR INLA: Fits several spatial CAR models for high-dimensional count data.

Orozco-Acosta, E., Adin, A., and Ugarte, M.D. (2021). Scalable Bayesian modeling for

smoothing disease risks in large spatial data sets using INLA. Spatial Statistics, 41,

100496, doi:10.1016/j.spasta.2021.100496.

• STCAR INLA: Fits several spatio-temporal CAR models for high-dimensional
count data.

Orozco-Acosta, E., Adin, A., and Ugarte, M.D. (2023). Big problems in spatio-temporal

disease mapping: methods and software. Computer Methods and Programs in

Biomedicine, 231, 107403 doi:10.1016/j.cmpb.2023.107403.

• MCAR INLA: Fits several spatial multivariate CAR models for high-dimensional
count data.

Vicente, G., Adin, A., Goicoa, T., and Ugarte, M.D. (2023). High-dimensional

order-free multivariate spatial disease mapping. Statistics and Computing, 33, 104.

doi:10.1007/s11222-023-10263-x.
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Lab Session 1: Installing the R package bigDM

Lab Session 1

Manual for installing the bigDM package

• Prerequisites

• Installation

• Verifying the installation
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Section 2: Spatial models for
(high-dimensional) areal data
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Statistical models in spatial disease mapping

Let us assume that the spatial domain of interest is divided into I contiguous
small areas labeled as i = 1, . . . , I .

• Oi and Ei denote the number of observed and expected cases, respectively,
for the i-th area.

• rit denotes the relative risk of mortality (incidence).

Then,

Oi |ri ∼ Poisson(µi = Ei ri )

logµi = log Ei + log ri

Depending on the specification of log ri , different models are defined.
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Conditional autoregressive (CAR) models

Here we assume that

log ri = β0 + x
′

iβ + ξi (1)

- β0 is a global intercept (representing the overall log-risk).

- xi = (xi1, . . . , xip)
′

is a p-vector of standardized covariates in the i-th area.

- β = (β1, . . . , βp)
′

is the p-vector of fixed effect coefficients.

- ξ = (ξ1, . . . , ξI )
′

is a spatially structured random effect with a CAR prior
distribution.

• Incorporating potential risk factors into a model is commonly referred to as
ecological regression, and it confers an inferential perspective on areal data
models by quantifying the relationship between a response variable and a set of
covariates (see, e.g., Mart́ınez-Beneito and Botella-Rocamora, 2019, chapter 5).

• In this type of models, both identifiability and confounding issues must be
carefully taken into account.
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CAR priors for random effects

• The spatial correlation between CAR random effects is determined by the
neighbouring structure (represented as an undirected graph) of the areal units.

• Let W = (wij) be a binary I × I adjacency matrix with wij = 1 if i ∼ j (usually if
they share a common border), and 0 otherwise.
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CAR priors for random effects

• Intrinsic CAR (iCAR) prior distribution (Besag et al., 1991)

ξ ∼ N(0,Q−ξ ), with Qξ = τξ(Dw −W)

where DW is a diagonal matrix with Dii =
∑
{j :j∼i} wij , and τξ = 1/σ2

ξ is a
precision parameter.

If the spatial graph is fully connected (matrix Qξ has rank-deficiency equal to 1,
or equivalently, Qξ1I = 0), a sum-to-zero constraint

∑I
i=1 ξi = 0 is usually

imposed to solve the identifiability issue between the spatial random effect and
the intercept in Model (1).

• Convolution CAR (or BYM) prior distribution (Besag et al., 1991)

ξ = u + v, with
u ∼ N(0, [τu(DW −W)]−),
v ∼ N(0, τ−1

v II )

The precision parameters τu and τv are not identifiable form the data (MacNab,
2011), just the sum ξi = ui + vi is identifiable. Hence, similar to the iCAR prior
distribution, the sum-to-zero constraint

∑I
i=1(ui + vi ) = 0 must be imposed to

solve identifiability problems with the intercept.
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CAR priors for random effects

• Leroux CAR (LCAR) prior distribution (Leroux et al., 1999)

ξ ∼ N(0,Q−1
ξ ), with Qξ = τξ[λξ(DW −W) + (1− λξ)II ]

where τξ is the precision parameter and λξ ∈ [0, 1] is a spatial smoothing
parameter.

Even the precision matrix Qξ is of full rank whenever 0 ≤ λξ < 1, a confounding
problem still remains and consequently, a sum-to-zero constraint

∑I
i=1 ξi = 0 has

to be considered (Goicoa et al., 2018).

• BYM2 prior distribution (Riebler et al., 2016)

ξ =
1
√
τξ

(√
λξu? +

√
1− λξv

)
,

where u? is the scaled intrinsic CAR model with generalized variance equal to
one (Sørbye and Rue, 2014) and v is the vector of unstructured random effects.

Unlike the LCAR model, the variance of ξ is expressed as a weighted average of
the covariance matrices of the structured and unstructured spatial components

Var(ξ|τξ) =
1

τξ
(λξR

−
? + (1− λξ)II ),

where R−? indicates the generalised inverse of the scaled spatial precision matrix.
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Scalable models for spatial areal data

Our modelling approach consists of three main steps:
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Step 1: divide the data

• Instead of considering global random effects whose correlation structure is
based on the whole spatial neighbourhood graph, we propose to divide the
spatial domain into D subregions.

• How to define spatial partitions:
1. Partitions based on administrative divisions of the area of interest (such as

provinces, states or local health areas)

2. Random partitions based on a regular grid over the associated cartography.

Figure 7: Partition of Spain based on Autonomous Communities (left) and a 4× 3
regular grid (right).
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Step 2: estimate local spatial models

• Disjoint model

- A partition of the spatial domain D into D subdomains is defined, so that
D =

⋃D
d=1 Dd where Dj ∩Dk = ∅ for all j 6= k.

- Each area belongs to a single subdomain.

• k-order neighbourhood model

- Assuming independence between areas belonging to different subdomains
could be very restrictive and it may lead to border effects.

- We circumvent this problem by adding neighbouring areal units (based on
spatial adjacency) to each partition.

Bayesian scalable models to analyze high-dimensional areal data using the bigDM library 27/53



Toy example: spatial partition

Subdomain 1 Subdomain 2 Subdomain 3 Subdomain 4

Figure 8: Toy example of a spatial partition using the disjoint and 1st/2nd-order
neighbourhood models.
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Step 3: merge the results

• Disjoint model

- The log-risks for the global domain are the union of the posterior marginal

estimates of each subregion, i.e, log r =
(

log r(1)′ , . . . , log r(D)′
)′

.

• k-order neighbourhood model

- Since multiple estimates are obtained for some areas from the different local
models, their posterior estimates must be properly combined to obtain a
single posterior distribution for each log ri .

- Two different merging strategies can be considered

1. Compute mixture distributions of the estimated posterior probability density
functions with weights proportional to CPOs

CPOi = Pr(Oi = oi |o−i )

2. Use the posterior marginal estimate of the areal-unit corresponding to the
original submodel (default option)

• Approximations to model selection criteria (DIC and WAIC) are also derived.
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Local and global estimates of the fixed effects

• When fitting partition models, local estimates of the fixed effect coefficients
βd = (β1d , . . . , βpd)

′
are obtained in each subdomain Dd , for d = 1, . . . ,D,

which can be viewed as spatially varying coefficients.

• To obtain global estimates of these coefficients across the entire study domain
from the partition models, we adapt the consensus Monte Carlo (CMC)
algorithm originally proposed by (Scott et al., 2016).

1. Extract samples of size S from the posterior marginal estimates of βjd using the
inla.rmarginal() function, denoted as βs

jd , for j = 1, . . . , p, d = 1, . . . ,D and

s = 1, . . . ,S.

2. Combine the draws using weighted averages

β̃j
s

=
D∑

d=1

wdβ
s
jd , for s = 1, . . . , S

where wd are normalized weights inversely proportional to the posterior marginal
variances of βjd .

3. Approximate the posterior marginal density function of the fixed effects coefficients
βj from the combined draws β̃j

s
, for j = 1, . . . , p.
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Lab Session 2: CAR models for spatial disease mapping

Lab Session 2

CAR models for spatial disease mapping

• The CAR INLA() function

• Example 1: stomach cancer mortality data

• Example 2: ecological regression model
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Section 3: Multivariate spatial models for
(high-dimensional) areal data
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M-models for multivariate disease mapping

Let us assume that the region under study is divided into I contiguous small areas
(i = 1, . . . , I ) and data are available for J diseases (j = 1, . . . , J).

• Oij and Eij denotes the number of observed and expected cases respectively in
the i-th small area and the j-th disease.

• rij denotes the relative risk of mortality (incidence).

Oij |rij ∼ Poisson(µij = Eij rij)

logµij = log Eij + log rij

Here, the log-risk is modelled as

log rij = αj + θij (2)

- αj is a disease-specific intercept.
- θij is the spatial effect for the i-th area and j-th disease.
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M-models for multivariate disease mapping

• Following Botella-Rocamora et al. (2015), we rearrange the spatial effects
into a matrix Θ = {θij} to better comprehend the dependence structure.

• The potential association between the spatial patterns of the different
diseases is introduced through the decomposition Θ = ΦM, where

◦ Φ is a matrix of independent columns following a conditional autoregressive
(CAR) prior distribution to deal with the spatial dependency within-diseases.

◦ M is a nonsingular but arbitrary matrix responsible for inducing dependence
between the columns of Θ.

◦ The covariance matrix between the spatial patterns is obtained as M
′
M.
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M-models for multivariate disease mapping

• The resulting prior distributions for vec (Θ) with Gaussian kernel has a
precision matrix given by

Ω
vec(Θ) =

(
M−1 ⊗ II

)
Blockdiag(Ω1, . . . ,ΩJ)

(
M−1 ⊗ II

)′
,

where Ω1, . . . ,ΩJ are the spatial precision matrices of the corresponding
CAR prior distributions.

• Here, intrinsic CAR priors have been considered to control the
within-disease spatial variability, so that the precision matrix is separable
and can be expressed as

Ω
vec(Θ) =

(
M

′
M
)−1

⊗ΩiCAR.
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Scalable Bayesian model proposal

• The M-model approach can be computationally very demanding when the
number of areas is very large.

• We combine the Orozco-Acosta et al. (2021) “divide-and-conquer”
approach with a modification of the Botella-Rocamora et al. (2015)
M-models to develop a scalable Bayesian modelling framework to analyse
high-dimensional multivariate spatial count data.

• For details about model implementation in R-INLA using the ‘rgeneric’

construct, see Vicente et al. (2023a).
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Between-disease correlations and marginal variances

• One of the main advantages of multivariate disease mapping models is
that they account for the correlations between the spatial patterns of the
different diseases.

• Using the global M-model we can compute correlation coefficients
between the diseases in the whole study domain and variance parameters
for each disease.

• Partition models provide insight about local connections between the
diseases in each subdivision.

• To obtain global estimates of these parameters across the entire study
domain, we use the previously described CMC algorithm to combine local
estimates from the partition models.
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Lab Session 3: M-models for spatial multivariate disease
mapping

Lab Session 3

M-models for spatial multivariate disease mapping

• The MCAR INLA() function

• Example: joint analysis of lung, colorectal and stomach cancer mortality
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Section 4: Spatio-temporal models for
(high-dimensional) areal data
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Statistical models in space-time disease mapping

Let us assume that the region under study is divided into contiguous small
areas labeled as i = 1, . . . , I , and data are available for consecutive time
periods labeled as t = 1, . . . ,T .

• Oit and Eit denotes the number of observed and expected cases,
respectively, for area i and time t.

• rit denotes the relative risk of mortality (incidence).

Then,

Oit |rit ∼ Poisson(µit = Eitrit)

logµit = log Eit + log rit

Depending on the specification of log rit , different models are defined.
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Spatio-temporal CAR models

Slight modifications of the spatio-temporal CAR models described by Knorr-Held
(2000) were considered by Ugarte et al. (2014). Here, we assume that:

log rit = β0 + x
′
itβ + ξi + γt + δit

- β0 is a global intercept (representing the overall log-risk).

- xit = (xit1, . . . , xitp)
′

is a p-vector of standardized covariates.

- β = (β1, . . . , βp)
′

is a p-vector of fixed effect coefficients.

- ξ = (ξ1, . . . , ξI )
′

is a spatially structured random effect with a CAR prior distribution.

- γ = (γ1, . . . , γT )
′

is a temporally structured random effect that follows a random walk
prior distribution.

- δ = (δ11, . . . , δIT )
′

is a spatio-temporal random effect (four types of interactions).

These models are flexible enough to describe real situations, and their interpretation
is simple and attractive.

However, the models are typically not identifiable and appropriate sum-to-zero
constraints must be imposed over the random effects (Goicoa et al., 2018).
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Identifiability constraints in spatio-temporal CAR models

Identifiability constraints for the different types of interaction effects in
spatio-temporal CAR models (Goicoa et al., 2018)

Type I (Rδ = IT ⊗ II ) :
I∑

i=1

ξi = 0,
T∑
t=1
γt = 0, and

I∑
i=1

T∑
t=1
δit = 0.

Type II (Rδ = Rγ ⊗ II ) :
I∑

i=1

ξi = 0,
T∑
t=1
γt = 0, and

T∑
t=1
δit = 0, for i = 1, . . . , I .

Type III (Rδ = IT ⊗ Rξ) :
I∑

i=1

ξi = 0,
T∑
t=1
γt = 0, and

I∑
i=1

δit = 0, for t = 1, . . . ,T .

Type IV (Rδ = Rγ ⊗ Rξ) :
I∑

i=1

ξi = 0,
T∑
t=1
γt = 0, and

T∑
t=1
δit = 0, for i = 1, . . . , I ,

I∑
i=1

δit = 0, for t = 1, . . . ,T .
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Scalable Bayesian model proposal

• Main problem: Computationally very demanding (or even unfeasible) to fit Type
II/IV interaction global models when the number of small areas is very large.

• When analyzing mortality data in Spanish municipalities over a period of T=25
years:

• Nearly 8000 constraints need to be imposed on the spatio-temporal
interaction term.

• Huge dimension of the spatio-temporal structure matrix

197 675× 197 675 (≈ 4x1010elements)

• In Orozco-Acosta et al. (2023a) we extend our scalable model proposals so that
local (non-stationary) spatio-temporal model can be simultaneously fitted

• Substantial reduction in RAM/CPU memory usage and computational time.

• Our new modelling approach outperforms the global model in both
simulation study and real data analysis.
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Parallel and distributed modelling

• When fitting partition models with bigDM, parallel and distributed computation
strategies can be performed to speed up computations by using the future

package (Bengtsson, 2020).

• Different computation strategies can be specified through the plan argument of
the CAR INLA(), STCAR INLA() and MCAR INLA() functions.

• If plan="sequential" (default), the models are sequentially fitted in the
current R session (local machine).
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Parallel and distributed modelling

• If plan="cluster" multiple models can be fitted in parallel on external R
sessions (local machine) or distributed in remote compute nodes.

1. Parallel computation

## Four local machines

workers <- rep("localhost", 4)

## Total number of available workers

workers <- future :: availableWorkers ()
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Parallel and distributed modelling

• If plan="cluster" multiple models can be fitted in parallel on external R
sessions (local machine) or distributed in remote compute nodes.

2. Distributed computation

## Single remote machine

workers <- "172.0.0.1" # using IP address

workers <- "machine1.remote.es" # using hostname

## Multiple remote machines

workers <- c("172.0.0.1","172.0.0.2")

workers <- c("machine1.remote.es","machine2.remote.es")
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Parallel and distributed modelling

• If plan="cluster" multiple models can be fitted in parallel on external R
sessions (local machine) or distributed in remote compute nodes.

3. Distributed + parallel computation

## Two models per remote machine

workers <- rep(c("172.0.0.1","172.0.0.2"), each =2)

## Two models per local and remote machines

workers <- rep(c("localhost","172.0.0.1","172.0.0.2"), each =2)
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Lab Session 4: Spatio-temporal models for disease mapping

Lab Session 4

Spatio-temporal models for disease mapping

• The STCAR INLA() function

• Example: colorectal cancer mortality data during the period 1991-2015
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Future work

• Computation of posterior patterns in spatio-temporal model

◦ The main limitation of partition models is that they only provide posterior
marginal estimates of the log-risks.

◦ However, the following decomposition of the estimated log-risks can be
computed to define posterior spatial, temporal and spatio-temporal patterns
(Adin et al., 2017)

α∗ = 1
IT

I∑
i=1

T∑
t=1

log rit ,

ξ∗i = 1
T

T∑
t=1

log rit − α∗, i = 1, . . . , I

γ∗t = 1
I

I∑
i=1

log rit − α∗, t = 1, . . . ,T

δ∗it = log rit − ξ∗i − γ∗t − α∗ i = 1, . . . , I ; t = 1, . . . ,T

◦ It can be easily checked that log rit = η∗ + ξ∗i + γ∗t + δ∗it .

◦ Approximate estimates of these patterns can be computed by efficiently
combining posterior samples of the log-risks obtained from their joint
distribution in each submodel (partition model).
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Future work

• Other approaches based on reduced rank multidimensional P-splines have
been also proposed in the field of disease mapping (Ugarte et al., 2017;
Vicente et al., 2023b)

⇒ Explore their feasibility when analyzing high-dimensional univariate and
multivariate count data.

• Investigate novel temporal and spatio-temporal partitioning strategies for
large-scale temporal data analysis.

• Explore the possibility of implementing our scalable modelling approach in
other Bayesian estimation techniques, such as Nimble or Stan.
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